The Use of Mappings for Stability Problems in Beam Dynamics

نویسنده

  • E. Todesco
چکیده

A review of some stability problems in single-particle dynamics of circular accelerators when the nonlinearities are not negligible is given. The betatron motion is modelized through the discrete formalism of symplectic mappings. Some numerical tools are used to work out the resonance patterns and the relation with long-term stability. A complementary picture is obtained through the perturbative methods of normal forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method

In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...

متن کامل

On the stability of multi-m-Jensen mappings

In this article, we introduce the multi-$m$-Jensen mappings and characterize them as a single equation. Using a fixed point theorem, we study the generalized Hyers-Ulam stability for such mappings. As a consequence, we show that every multi-$m$-Jensen mappings (under some conditions) is hyperstable.

متن کامل

Fuzzy approximately additive mappings

Moslehian  and Mirmostafaee, investigated the fuzzystability problems for the Cauchy additive functional equation, the Jensen additivefunctional equation and the cubic functional equation in fuzzyBanach spaces. In this paper, we investigate thegeneralized Hyers–-Ulam--Rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy Banachspaces. Also, we will show ...

متن کامل

Dynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method

This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...

متن کامل

Convergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings

The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007